Veerasak Srisuknimit, Ph.D.

Veerasak Srisuknimit, Ph.D.

B.Sc., Harvey Mudd College
M.A., Harvard University
Ph.D., Harvard University
Postdoctoral training, Brigham and Women’s Hospital / Harvard Medical School

Office: Room 516/1, Science 10 Building 
Phone: 662-218-7748
Fax: 662-218-5418 



The most important medical advance of the 20th century is the discovery of antibiotics. These drugs lead to the cure of many previously fatal diseases and allow complicated surgeries to be performed with a lower risk of infection. Penicillin, vancomycin, bacitracin, and many other clinically important antibiotics target the bacterial cell wall biogenesis pathway – a crucial biological process that is still poorly understood. The rise of antibiotic resistance is threatening public health and thus demands a better understanding of how bacteria grow and how to stop them. Our lab is interested in investigating bacterial peptidoglycan synthesis and in developing new biochemical tools to aid our study. We will focus on Vibrio cholerae – a pandemic pathogen, Vibrio parahaemolyticus – an important pathogen for Thailand’s shrimp industry, and Burkholderia pseudomallei – an etiologic agent of tropical disease melioidosis.

Research Topics:

• Peptidoglycan biogenesis

• Development of new biochemical tools to study peptidoglycan synthesis

• Antibiotic discovery

Recent Publications:

1. Candidate undecaprenyl phosphate translocases enable conditional microbial fitness and pathogenesis B. Sit*, V. Srisuknimit*, K. Hullahalli, E. Bueno, F. Cava, M.K. Waldor, bioRxiv (preprint), 2022,

2. Sequential action of a tRNA base editor in conversion of cytidine to pseudouridine. S. Kimura, V. Srisuknimit, K. McCarty, P.C. Dedon, P.J. Kranzusch, M.K. Waldor, bioRxiv (preprint), 2022,

3. Probing the diversity and regulation of tRNA modifications. S. Kimura, V. Srisuknimit, M.K. Waldor, Current Opinion in Microbiology, 2020, 57, 41-48.

4. A central role for PBP2 in the activation of peptidoglycan polymerization by the bacterial cell elongation machinery. P.D.A. Rohs, J. Buss, S.I. Sim, G.R. Squyres, V. Srisuknimit, M. Smith, H. Cho, M. Sjodt, A.C. Kruse, E.C. Garner, S. Walker, D.E. Kahne, T.G. Bernhardt, PLoS Genetics, 2018, 14(10), e1007726.

5. Genome-wide mutant profiling predicts the mechanism of a Lipid II binding antibiotic. M. Santiago, W. Lee, A.A. Fayad, K.A. Coe, M. Rajagopal, T. Do, F. Hennessen, V. Srisuknimit, R. Müller, T.C. Meredith, S. Walker, Nature Chemical Biology, 2018, 14 (6), 601-608.

6. Structure of the peptidoglycan polymerase RodA resolved by evolutionary coupling analysis. M. Sjodt, K. Brock, G. Dobihal, P.D.A. Rohs, A.G. Green, T.A. Hopf, A.J. Meeske, V. Srisuknimit, D. Kahne, S. Walker, D.S. Marks, T.G. Bernhardt, D.Z. Rudner, A.C. Kruse, Nature, 2018, 556 (7699), 118-121.

7. Peptidoglycan Cross-Linking Preferences of Staphylococcus aureus Penicillin-Binding Proteins Have Implications for Treating MRSA Infections, V. Srisuknimit*, Y. Qiao*, K. Schaefer, D. Kahne, and S. Walker, Journal of American Chemical Society, 2017, 139 (29), 9791-9794. *co-first authors.

8. Lipid II Overproduction Allows Direct Assay of Transpeptidase Inhibition by β-lactams, Y. Qiao*, V. Srisuknimit*, F. Rubino, K. Schaefer, N. Ruiz, S. Walker and D. Kahne, Nature Chemical Biology, 2017, 13 (7), 793-798. *co-first authors

9. The Mechanism of Action of Lysosbactin, W. Lee, K. Schaefer, Y Qiao, V. Srisuknimit, H. Steinmetz, R. Muller, D. Kahne, and S. Walker, Journal of American Chemical Society, 2016, 138 (1), 100-103.

10. Self-Assembly, Guest Capture, and NMR Spectroscopy of a Metal–Organic Cage in Water, E. B. Go, V. Srisuknimit, S. L. Cheng, and D.A. Vosburg, Journal of Chemical Education, 2016, 93 (2), 368-371.

11. Direct, biomimetic synthesis of (+)-artemone via a stereoselective, organocatalytic cyclization, E.D. Nacsa, B.C. Fielder, S.P. Wetzler, V. Srisuknimit, J.P. Litz, M.J. Van Vleet, K. Quach, and D.A. Vosburg, Synthesis, 2015, 47, 2599-2602.